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The distinctive features of equilibrium vortex structures in thin films of anisotropic superconductors in tilted
magnetic fields are studied for the limits of moderate and strong anisotropy. The energetically favorable shape
of isolated vortex lines is found in the framework of two particular models describing these limiting cases:
London theory with an anisotropic mass tensor and London-type model for a stack of Josephson-decoupled
superconducting layers. The increase in the field tilting is shown to result in qualitative changes in the
vortex-vortex interaction potential: the balance between long-range attractive and repulsive forces occurs to be
responsible for a formation of a minimum of the interaction potential vs the intervortex distance. This mini-
mum appears to exist only for a certain restricted range of the vortex tilting angles which shrinks with the
decrease in the system anisotropy parameter. Tilted vortices with such unusual interaction potential form
clusters with the size depending on the field tilting angle and film thickness or/and can arrange into multiquanta
flux lattice. The magnetic flux through the unit cells of the corresponding flux line lattices equals to an integer
number M of flux quanta. Thus, the increase in the field tilting should be accompanied by the series of the
phase transitions between the vortex lattices with different M.
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I. INTRODUCTION

According to a standard picture of the mixed state in bulk
type-II superconductors �SC� the Abrikosov vortices pen-
etrating the homogeneous sample form a periodic arrange-
ment called a flux lattice.1 The magnetic flux through the unit
cell of such flux line lattice equals to the flux quantum �0
=��c /e: we have one vortex per unit cell. There are a few
examples of rather exotic superconducting systems which
may provide a possibility to observe a different vortex-lattice
periodicity, namely, the structures with more than one vorti-
ces per unit cell. In particular, the phase transitions to such
multiquanta flux lattices can occur, e.g., for superconductors
with unconventional pairing2,3 or two-dimensional �2D�
Fulde-Ferrell-Larkin-Ovchinnikov superconductors.4

The goal of this work is to suggest an alternative scenario
of the phase transitions between the flux structures with dif-
ferent number of vortices per unit cell which can be realized
in thin films of anisotropic superconductors. The underlying
physical mechanism for this scenario arises from the inter-
play between the long-range attraction and repulsion be-
tween tilted vortex lines in thin films discussed recently in
Ref. 5. The unusual attractive part of the vortex-vortex inter-
action potential is known to be a distinctive feature of aniso-
tropic superconductors and the value of the attractive force is
controlled by the tilting angle of the vortex line with respect
to the anisotropy axis.6–9 The origin of the long-range inter-
vortex repulsion in thin films has been analyzed in the pio-
neering work10 by Pearl in 1964. This repulsion force always
overcomes the attraction at rather large distances because of
the different power decay laws of these contributions. Note
that, of course, the short-range interaction between vortices
is also repulsive. Finally, this balance between the repulsion
and attraction can result in the formation of the nonmono-
tonic interaction potential U�R� vs the intervortex distance R.
Increasing the vortex tilting angle we first strengthen the

attraction force between vortices and, thus, the minimum in
the vortex interaction potential can appear only for rather
large tilting angles when the attraction overcomes the Pearl’s
repulsion. This minimum shifts toward the larger intervortex
distances with the further increase in the tilting angle and,
finally, at rather large distances the attraction appears to be
suppressed due to the exponential screening effect. As a con-
sequence, the minimum in the interaction potential exists
only for a certain restricted range of the vortex tilting angles
which shrinks with the decrease in the system anisotropy
parameter. The appearance of a minimum in the interaction
potential points to the possibility to get a bound vortex pair
�or even the clusters with higher vorticities� for a certain
range of vortex tilting angles. For a flux line lattice such
vortex-vortex interaction potential can cause an instability
with respect to the unit-cell doubling, i.e., the phase transi-
tion to the multiquanta vortex lattices.

In this paper we use two theoretical approaches to de-
scribe the peculiarities of the intervortex interaction and re-
sulting formation of clusters and multiquanta lattices. One of
them is a standard London model accounting for an aniso-
tropic mass tensor which is adequate for the superconductors
with moderate anisotropy. This approach assumes that the
superconducting coherence length in all directions exceeds
the distance between the atomic layers and obviously breaks
down in the limit of strong anisotropy, i.e., for Josephson-
coupled layered structures. In the latter case we choose to
apply another phenomenological model, namely, the so-
called Lowrence-Doniach theory.11 For rather small intervor-
tex distances this theory can be simplified neglecting the
effects of weak interlayer Josephson coupling. This approach
of Josephson-decoupled superconducting layers is known to
be useful in studies of the vortex-lattice structure at low
fields.12,13

Considering thin-film samples in tilted magnetic fields we
do not restrict ourselves by the case of only straight vortex
lines and study the problem of the energetically favorable
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vortex line shape in the presence of the inhomogeneous su-
percurrent screening the field component H� parallel to the
film plane. Previously this problem has been addressed in
Ref. 14 for rather small deviations of the vortex line from the
direction normal to the film plane. Such approximation is
obviously valid only for the �H�� values much smaller than
the critical field Hc1

�0� of the penetration of vortices parallel to
the film plane. For anisotropic London model this analysis of
Ref. 14 has been previously generalized for the case of a
strongly distorted vortex line �see Ref. 15�. For the sake of
completeness we present here the calculations of the shape of
an isolated vortex line for arbitrary fields �H���Hc1

�0� within
both theoretical models describing the limits of strong and
moderate anisotropy. As a next step, we calculate the vortex-
vortex interaction potential for such strongly deformed vor-
tex lines. Further analysis in the paper includes the calcula-
tions of energy of finite-size vortex clusters as well as the
energy of vortex lattices with different number of vortices
per unit cell.

Experimentally the visualization of unconventional vortex
arrangements could be carried out by a number of methods
which provided convincing evidence for the existence of vor-
tex chains in bulk anisotropic superconductors caused by the
intervortex attraction phenomenon �such as the decoration
technique in YBa2Cu3O7,16 scanning-tunneling microscopy
in NbSe2,17 and scanning Hall-probe18 and Lorentz micros-
copy measurements in YBa2Cu3O7 �Refs. 19 and 20��.

The paper is organized as follows. In Sec. II we find the
energetically favorable shape of an isolated vortex line. In
Sec. III we calculate the vortex-vortex interaction potential
and prove the existence of a potential minimum for a certain
range of field tilting angles and parameters. Section IV is
devoted to the calculation of energy of vortex clusters. Fi-
nally, in Sec. V we present our analysis of the phase transi-
tion between the vortex lattices with one and two flux quanta
per unit cell. The results are summarized in Sec. VI. Some of
the calculation details are presented in Appendices A and B.

II. ENERGETICALLY FAVORABLE SHAPE OF AN
ISOLATED VORTEX LINE

A. Vortex line in a finite stack of thin superconducting layers

We start our study of the distinctive features of equilib-
rium vortex structures in thin films of anisotropic supercon-
ductors with the consideration of the vortex line shape in the
layered systems. Let us consider a finite stack of N SC lay-
ers. Vortex line of an arbitrary shape pierces the film and can
be viewed as a string of 2D pancake vortices: each of these
pancakes is centered at the point rn=xnx0+yny0 in the nth
layer. Within the model of the stack of Josephson-decoupled
SC layers, pancakes can interact with each other only via
magnetic fields. We denote the interlayer spacing as s and
consider each of the N layers as a thin film with the thickness
d much less than the London penetration depth �. General
equation for the vector potential A distribution in such sys-
tem reads

rot rot A =
4�

c
�

n,m=1

N

Jn
m�r���z − zn� , �1�

where �=�2 /d is the effective penetration depth in a super-
conducting film of a vanishing thickness d, each nth SC layer

coincides with the plane z=zn=ns �1	n	N�, the sheet cur-
rent at the nth layer created by the pancake at mth layer takes
the form

Jn
m�r� =

c

4��
���r − rm��nm − Am�r,zn�� . �2�

Am�r ,z� is the vector potential induced by the only pancake
vortex located in the mth layer �Fig. 1�. The vector ��r� in
Eq. �2� is given by the expression

��r� =
�0

2�

�z0 
 r�
r2 �3�

and �0=��c /e is the flux quantum. For the layered system
without Josephson coupling a general expression for the free
energy can be written in the form

F =
1

8�
� dV	�rot A�2 + 
4�

c
�2

��
n

Jn
2�r���z − zn�� ,

�4�

where the total vector potential A�r ,z� and the sheet current
in the nth layer Jn�r�, produced by an arbitrary vortex line
are the sum of the contributions induced by all 2D pancakes,

A�r,z� = �
m=1

N

Am�r,z�, Jn�r� = �
m=1

N

Jn
m�r� .

To find the magnetic vector potential Am�r ,z� we adopt an
approach similar to that in Refs. 21 and 22. Between the SC
layers the vector potential Am is described by the Laplace
equation

�Am�r,z� = 0. �5�

For the gauge Az
m=0 the vector potential has only the in-

plane components Am= �Ax
m ,Ay

m�, where

Am�r,z� =
1

�2��2� dqeiqrAq
mUm�q,z� �6�

and the function Um�q ,z� can be written as

z

d

s
zn+ Jn

m

zN

z1

zm

FIG. 1. A single 2D pancake vortex positioned in the mth layer
of a finite layered structure, d is a thickness of the superconducting
layer, and s is the distance between the layers.
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Um�q,z� =
��n

m sinh q�zn+1 − z� + �n+1
m sinh q�z − zn��/sinh�qs� ,

zn � z � zn+1, n = 1, . . . ,N − 1,

�N
m exp�− q�z − zN��, z � zN,

�1
m exp�q�z − z1��, z 	 z1.

� �7�

Taking the Fourier transform of Eq. �2� we find

Jn
m�q� =

c

4��
���q�eiqrm�nm − Aq

m�n
m�q�� , �8�

where

��q� = − i�0
�z0 
 q�

q2 . �9�

The sheet current density Jn
m results in the discontinuity of

the in-plane component of the magnetic field B�
m across the n

layer,

4�

c
Jn

m = z0 
 �B�
m�r,zn + 0� − B�

m�r,zn − 0��

= z0 
�	z0 

�Am

�z
��

zn−0

zn+0

. �10�

Substituting expressions �6�–�8� into above condition �10�
we obtain the system of linear equations for the coefficients
�n

m,

h�q��1
m − �2

m = �1m,

− �n−1
m + g�q��n

m − �n+1
m = �nm, n = 2, . . . ,N − 1,

− �N−1
m + h�q��N

m = �Nm. �11�

Here we introduce two new functions which depend on the
wave number q,

g�q� = 2 cosh�qs� + sinh�qs�/�q ,

h�q� = cosh�qs� + �1 + 1/�q�sinh�qs� .

The solution of the linear system �Eq. �11�� and Eqs. �6� and
�7� define the distribution of the vector potential Am�r ,z�
which is created by a single pancake vortex positioned in the
mth layer.

Without the in-plane external magnetic field H� the rela-
tive displacement of the pancakes in the different layers is
absent: Rmk=rm−rk=0 �i.e., the pancakes form a vertical
stack�. A rather small magnetic field H� =Hay0 induces a
screening Meissner current Jn

M =Jn
Mx0 in each nth layer. Lor-

entz forces arising from these currents will move the pan-
cakes from their initial positions. Taking into account �Eq.
�10��, we find the following system of linear equations de-
scribing the distribution of the magnetic field screened by the
layered structure:


2 +
s

�
�H1 − H2 = Ha,

− Hn−1 + 
2 +
s

�
�Hn − Hn+1 = 0, n = 2, . . . ,N − 2,

− HN−2 + 
2 +
s

�
�HN−1 = Ha. �12�

Here Hn=Hny0 is the magnetic-field value between the nth
and �n+1�th layers. The distribution of the Meissner screen-
ing currents in the layers takes the form

J1
M =

c

4�
�H1 − Ha�, Jn

M =
c

4�
�Hn − Hn−1� ,

n = 2, . . . ,N − 2, JN
M =

c

4�
�Ha − HN−1� . �13�

The resulting Lorentz forces Fn
M acting on the pancakes can

be written as follows:

Fn
M = ��0/c��Jn

M 
 z0� = ��0/c�Jn
My0. �14�

The interaction forces between the pancakes can be found
using expression �8� for the sheet current Jk

m generated by the
pancake positioned in the mth layer,

Fk
m = ��0/c��Jk

m 
 z0�

=
�0

2

8�2��ab
� 1

Rmk
�mk − �

0



dqJ1�qRmk�
�k

m�q�g�q�
Z�q� �Rmk

Rmk
,

�15�

where J1��� is the first-order Bessel function of the first kind,
�ab

2 =�s=�2s /d is the penetration depth for the in-plane cur-
rents, and

Z�q� = 1 + 2q�/tanh�qs� .

In order to find the equilibrium form of the vortex line in a
finite stack of N superconducting layers under the influence
of the in-plane external magnetic field H�, we consider the
relaxation of the set of the pancakes toward the equilibrium
positions within the simplest version of the dynamic theory,

�
drn

dt
= �

m�n

Fn
m + Fn

M , �16�

where � is the viscous drag coefficient. Considering the vor-
tex line consisting of N pancakes we start from the initial
configuration of pancakes arranged in a straight vortex line
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parallel to the z direction �see Fig. 2�. As the system ap-
proaches its final force-balanced �equilibrium� configuration,
the velocities of all pancake motions should vanish

lim
t→

drn

dt
= 0, 1 	 n 	 N .

In Fig. 2 we illustrate the evolution of the pancake configu-
rations for two values of the applied in-plane magnetic field
H� and for two different numbers of layers: N=31 �Figs. 2�a�
and 2�b�� and N=11 �Figs. 2�c� and 2�d��. The forces Fn

M

caused by the Meissner currents rotate and bend the vortex
line. For rather small applied field values this rotation and
bending result in the formation of a certain stable configura-
tion �see Figs. 2�a� and 2�c��. For the fields exceeding a
certain critical value H� we do not find such stable pancake
arrangement. The vortex line splits into two segments which
move in opposite directions �see Figs. 2�b� and 2�d��. To
define the critical value H� for the breakup of the vortex line
we have carried out the calculations of the pancake arrange-
ments increasing the in-plane magnetic field with the step
�Ha=0.01H0 �H0=�0 /2��ab

2 �. The stationary vortex ar-
rangement disappears above a certain threshold field value
which is taken as a critical field H�. The pancake configura-
tions for the both cases N=31 and N=11 are qualitatively
similar but the values of the critical field H� for N=31 and
N=11 are different. With a decrease in the number of layers
N �film thickness� the value of the critical field H� grows:
H�=0.21H0 for N=31 and H�=0.38H0 for N=11. In fact in
layered superconductors with very weak interlayer coupling

the Josephson vortices will appear at much lower field Ha
�Hc1

�0��H�. As a result, at tilted magnetic field, crossing
lattice of pancakes, forming Abrikosov vortices, and Joseph-
son vortices exist rather than a lattice of tilted vortex
stacks.18,23,24 The interaction between pancakes and in-plane
field in the form of Josephson vortices produces zigzag de-
formation of the stack of the pancakes.25 This deformation is
responsible for a long-range attraction between such stacks26

which is quite similar to the case of considered in the present
work.

B. Vortex line within anisotropic London model

We proceed now with the consideration of the vortex line
shape in an anisotropic film which is characterized by the
London penetration depths �ab and �c for currents flowing
parallel and perpendicular to the ab plane, respectively. We
consider the case of uniaxial anisotropy which can be de-
scribed by a dimensionless anisotropic mass tensor mij
=m0��ij + ��2−1�cicj�, where �=�c /�ab is the anisotropy pa-
rameter and c is the anisotropy axis. We choose the z axis of
the coordinate system perpendicular to the film surface. In
the parallel to the film plane direction we apply a certain
magnetic field H� =y0Ha which is screened inside the super-
conducting film.

We consider first a typical geometry when the c axis is
chosen along the direction normal to the film plane. In such
geometry the vortex line is parallel to the plane �y ,z� and can
be parametrized by a single valued function y=y�z�. An ap-
propriate thermodynamic potential for determination of the
energetically favorable form of the vortex line takes the form

G = Fv −
�0

4�
�

−D/2

D/2

dz	1 −
cosh�z/�ab�

cosh�D/2�ab��y��z�Ha, �17�

where D is the film thickness. The first term, Fv, is the
Ginzburg-Landau free energy of the curved vortex line, and
the second term corresponds to the work of Lorentz force
acting on the flux line and distorting this line in the presence
of screening currents induced by the external magnetic-field
component Ha parallel to the film plane. To simplify the Fv
expression we consider a strong type-II superconducting ma-
terial with a large ratio of the London penetration depths and
coherence lengths. In this case the main contribution to the
vortex line energy is determined by the energy of supercur-
rents jv=c rot Bv /4� flowing around the vortex core

Fv �
�ab

2

8�
� dV rot Bv��̂ rot Bv�

�
�0

2

32�3�ab
2 � dV��̂−1 � �v,��v� , �18�

where �̂= m̂ /m0 and �v is the order parameter phase distri-
bution around the vortex line. The above expression for the
free energy reveals a logarithmic divergence which should be
cut off at both the small and large spatial length scales. The
lower cut-off length is naturally equal to the characteristic
size rc of the vortex core which is on the order of the coher-
ence length. Of course, in anisotropic case one should intro-

FIG. 2. �Color online� Configurations of N=31 �panels a and b�
and N=11 �panels c and d� pancakes in a finite stack in the presence
of the applied in-plane magnetic field Ha. �a� The force-balanced
�equilibrium� configuration of pancakes for Ha=0.2H0�H�. �b�
Pancake configurations at sequential time points t1� t2� t3 for Ha

=0.22H0�H�. For the structure with N=31 we find H��0.21H0.
�c� The force-balanced �equilibrium� configuration of pancakes for
Ha=0.35H0�H�. �d� Pancake configurations at sequential time
points t1� t2� t3 for Ha=0.4H0�H�. For the structure with N
=11 we find H��0.38H0. Here H0=�0 /2��ab

2 , �=10�ab, and s
=0.1�ab.
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duce two different coherence lengths �ab and �c in the ab
plane and along the c axis, respectively. The resulting core
size and lower cut-off length rc for a certain element of the
tilted flux line will, thus, depend on both �ab and �c lengths
as well as on the local tilting angle of the vortex line. The
upper cut-off length strongly depends on the ratio of the film
thickness to the London penetration depth. For rather thick
films D��ab this cut-off length Lc is determined by a certain
combination of the screening lengths �ab and �c �see, e.g.,
Ref. 27�. For a thin film with D��ab one can separate two
energy contributions: �i� the contribution coming from the
region of the size �D around the curved vortex line and
providing the logarithmic term in the free energy with the
upper cut-off length Lc�D and �ii� the logarithmic contribu-
tion �ln��ab

2 /D2� coming from the larger distances ��D
which weakly depends on the vortex line shape. To sum up,
the part of the vortex line energy which depends on its shape
can be approximately written in the form

�Fv �
�0

2

16�2��ab
2 ln�Lc/rc��

−D/2

D/2

dz��2 + y�2�z� . �19�

Note that we neglect here the weak dependence of the loga-
rithmic factor on the vortex line curvature and local orienta-
tion. Within such approximation we consider the vortex line
as a thin elastic string which is, of course, valid provided the
characteristic scale of the string bending is larger than the
upper cut-off length Lc.

The condition of the zero first variation in the Gibbs func-
tional gives us the following equation:

y��z� =
�b�z�

�1 − b2�z�
, �20�

where

b�z� =
Ha

Hab

 	1 −

cosh�z/�ab�
cosh�D/2�ab��,

Hab =
�0

4���ab
2 ln�Lc/rc� .

Equation �20� is valid for magnetic fields which do not ex-
ceed the critical field of the penetration of vortices parallel to
the film plane

�Ha� � Hc1
�0� = Hab

cosh�D/2�ab�
cosh�D/2�ab� − 1

. �21�

Thus, analogously to the case of a stack of decoupled layers
the stable curved vortex lines can exist only for rather small
magnetic fields below the critical field Hc1

�0� which corre-
sponds to the penetration of a vortex parallel to the film
plane. Note that in the limit Ha�Hab one can obtain the
result found previously in Ref. 14,

y��z� �
�Ha

Hab
	1 −

cosh�z/�ab�
cosh�D/2�ab��,

y�z� �
�Ha

Hab
	z − �ab

sinh�z/�ab�
cosh�D/2�ab�� .

Typical shape of a bent vortex line calculated from Eq. �20�
is shown in Fig. 3�a�.

The above expressions can be easily generalized for an
arbitrary angle � between the anisotropy axis c and the di-
rection normal to the film plane. We restrict ourselves to the
case when the axis c is parallel to the plane �y ,z� and vortex
line can be parametrized by a function y=y�z� as before. In
this case the part of the free energy �Eq. �18�� depending on
the vortex line shape takes the form

�Fv �
�0

2

16�2��ab
2 ln�Lc/rc��

−D/2

D/2

dz�1 + y�2�z��sin2 ��z� + �2 cos2 ��z� ,

FIG. 3. �Color online� Typical configurations of the vortex lines in the film of the thickness D=3�ab for the anisotropy parameter �
=5 and for different values of in-plane magnetic field H� =Hay0. �a� The anisotropy axis is perpendicular to the film plane ��=0°, Hc1

�0�

�1.74Hab�. �b� The anisotropy axis is tilted with respect to the z axis ��=30°, Hc1
����4.6Hab� The numbers near the curves denote the values

of the ratio Ha /Hab. The dashed line shows the shape of a vortex line in the absence of the in-plane magnetic field.
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where tan���z�+��=y��z�. Thus we find the following equa-
tion describing the vortex line shape:

y��z� =
t�1 − �2�
1 + t2�2 +

�N�z��1 + t2�
�1 + t2�2��1 + t2�2 − N2�z�

, �22�

where

N�z� =
Ha

Hab

�1 + t2 
 	1 −
cosh�z/�ab�

cosh�D/2�ab��, t = tan � .

Note that Eq. �22� is valid in the field range

�Ha� � Hc1
��� =

Hab cosh�D/2�ab�
cosh�D/2�ab� − 1

�1 + t2�2

1 + t2 . �23�

The critical field Hc1
��� corresponds to the penetration of a

vortex parallel to the film plane. Typical plots illustrating the
numerical solution of Eq. �22� are shown in Fig. 3�b� for
different orientations of the applied magnetic field. Note an
important difference between the opposite directions of the
magnetic field Ha: for Ha�0 the vortex line consists of seg-
ments tilted in opposite directions with respect to the z axis.

III. VORTEX-VORTEX INTERACTION POTENTIAL

In this section we derive general expressions for the in-
teraction energy between two vortices in a thin film of an
anisotropic superconductor taking into account both long-
range attraction and repulsion phenomena. We study both the
limits of strong and moderate anisotropy for a wide range of
vortex tilting angles. The shape of the interacting vortex lines
is assumed to be fixed and not affected by the vortex-vortex
interaction potential. Certainly, such assumption is valid only
in the limit of rather larger distances between the vortex lines
when the effect of interaction on the vortex shape can be
viewed as a small perturbation.

A. Interaction potential of two tilted stacks of pancakes

In this section we consider the interaction between two
vortex lines consisting of pancake vortices. For each vortex
the pancake centers are assumed to be positioned along the
straight line tilted at the angle � with respect to the aniso-
tropy axis c �z axis�. We restrict ourselves to the case of
parallel vortex lines shifted by a certain vector R in the plane
of the layers. Using the gauge div A=0 and the Fourier
transform

A�q,k� =� d2rdzeiqr+ikzA�r,z� , �24�

An�q� =� d2reiqrA�r,zn�, Jn�q� =� d2reiqrJn�r� ,

�25�

one can rewrite the basic �Eq. �1�� in the momentum repre-
sentation as follows:

�q2 + k2�A�q,k� =
1

�
�

n

��n�q� − An�q��eikns, �26�

where �n�q�=��q�eiqrn. Taking account of the relation

2�An�q� =� dkeikznA�q,k� ,

we obtain from Eq. �26� the following equations for the Fou-
rier components of the vector potential An�q�:

2q�An = �
m

�eiqrm��q� − Am�e−�n−m�qs. �27�

These equations can be reduced to the scalar form

fn +
1

2q�
�
m

e−�n−m�qsfm = eiqrn, �28�

where we introduce the new functions fn�q�,

Jn�q� =
c

4��
��n�q� − An�q�� =

c

4��
��q�fn�q� . �29�

The solution of the linear system �Eq. �28�� for a fixed dis-
tribution of pancakes rn determines the distribution of the
vector potential A�r ,z� which is created by an arbitrary vor-
tex line in a finite stack of superconducting layers. In the
momentum representation the general expression �4� for the
free energy of the layered system without Josephson cou-
pling reads

F =
1

32�3�
�

n
� d2q��n�q� − An�q���n�− q� . �30�

For two vortex lines we can write the total vector potential
and the total sheet current as superpositions of contributions
coming from the first �An

�1�, Jn
�1�� and second �An

�2�, Jn
�2�� vor-

tices,

FIG. 4. �Color online� Typical plots of the interaction energy per
vortex �Eqs. �33� and �34�� vs the distance R between two vortices
for a film of thickness D=3�ab and different tilting angles �=70°,
75°, 78°, and 80° ��0=�0

2 /16�3�ab�.
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An�q� = An
�1��q� + An

�2��q�, Jn�q� = Jn
�1��q� + Jn

�2��q� .

Calculating the interaction energy �int of vortex lines we
should keep in Eq. �30� only the terms which contain the
products of fields corresponding to different vortex lines,

�int =
1

32�3�
�

n
� d2q���n

�1��q� − An
�1��q���n

�2��− q�

+ ��n
�2��q� − An

�2��q���n
�1��− q�� . �31�

Finally, for the particular case of two parallel vortex lines
which are shifted at the vector R=rn

�2�−rn
�1� �n=1,N� in the

�xy� plane we get following expression for the interaction
energy via the scalar functions fn�q�:

�int�R� =
�0

2

16�3�
� d2q

q2 cos�qR��
n

fn�q�e−iqrn. �32�

Expressions �28� and �32� determine the interaction energy
of two identically bent vortex lines.

Our further consideration in this subsection is based on
two assumptions: �i� for each vortex we choose the centers of
pancakes to be positioned along the straight line tilted at a
certain angle � relative to z axis and put rn=ns tan �y0; �ii�
we restrict ourselves by the continuous limit assuming qs
�1 and qys tan ��1. In this case Eqs. �28� and �32� can be
simplified �see Appendix A for details�,

�int�R� =
�0

2

16�3�ab
� d2q cos�qR�S�q� , �33�

S�q� =
1

�abq2�D
p2 + k2

1 + p2 +
2�1 − k2��k�1 − p2�sinh L + �k2 − p2��cosh L − cos�pL�� + 2kp sin�pL��

�q2 + �ab
−2�1 + p2�2�2k cosh L +��1 + k2�sinh L�� � , �34�

where

L = D�q2 + �ab
−2, k = q/�q2 + �ab

−2, p = qy tan �/�q2 + �ab
−2,

�35�

and D= �N−1�s is the thickness of the superconducting film.
The first term in Eq. �34� describes the interaction in the bulk
system while the second term is responsible for the effect of
film boundaries.

The minimum-energy configuration corresponds to the
case Rx=0. In Fig. 4 we present some typical plots of the
interaction energy �int�Rx=0,Ry� vs the distance Ry =R for
d=3�ab which corresponds to the Lorentz microscopy ex-
periments in YBa2Cu3O7−� �Ref. 5� and Bi2Sr2CaCu2O8+�
�Ref. 20� samples. Analyzing the dependence �int�R�, one
can separate three contributions to the energy of vortex-
vortex interaction: �i� a short-range repulsion which decays

exponentially with increasing intervortex distance R �for R
��ab�; �ii� an intervortex attraction which is known to be
specific for tilted vortices in anisotropic systems; this attrac-
tion energy term decays as R−2 and strongly depends on the
angle � between the vortex axis and the c direction; and �iii�
long-range �Pearl� repulsion which decays as R−1 and results
from the surface contribution to the energy. Note that the
third term does exist even for a large sample thickness D �see
Ref. 28� although in the limit D��ab it is certainly masked
by the dominant bulk contribution. At R��ab the short-
range interaction term vanishes and the interaction energy vs
R takes the form

�int �
�0

2

8�2
−
Def f tan2 �

R2 +
2

R
� , �36�

where Def f =D−2�ab tanh�D /2�ab� is the effective film
thickness. One can observe here an interplay between the

FIG. 5. �Color online� Typical plots of the interaction energy per vortex �Eqs. �38� and �39�� vs the distance R between two tilted vortices
for an anisotropic film of the thickness D=3�ab. �a� Interaction energy for the anisotropy parameter �=27 and different tilting angles. The
numbers near the curves denote the values of tilting angle �. �b� Interaction energy for �=83° and different values of anisotropy parameter.
The numbers near the curves denote the values of �.
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long-range attractive �first term in Eq. �36�� and the repulsive
�second term in Eq. �36�� forces. Note that the �ab value
increases with an increase in temperature, thus, the effective
thickness decreases and the long-range attraction force ap-
pears to be suppressed with increasing temperature. For large
R the energy is always positive and corresponds to the vortex
repulsion similar to the one between the pancakes in a single
layer system. With a decrease in the distance R the attraction
force comes into play resulting in the change in the sign of
the energy. Such behavior points to the appearance of a mini-
mum in the interaction potential.

B. Vortex-vortex interaction within anisotropic London model

We now proceed with the derivation of the expression for
the intervortex interaction energy in an anisotropic supercon-
ducting film. We choose the anisotropy axis c �z axis� to be
oriented perpendicular to the film plane and consider two
curved vortex lines with identical shapes found in Sec. II B.

Our further calculations are based on general expressions
derived in Ref. 29 for the energy of an arbitrary vorticity
distribution in an anisotropic superconducting film of finite
thickness �see Appendix B for details�. The resulting interac-
tion energy of two curved vortices shifted from each other in
the y direction at a certain distance R can be presented in the
form

�int = �0��int
vi + �int

stray + �int
vac� , �37�

where �0=�0
2 /16�3�ab while �int

vi , �int
stray, and �int

vac are given by
expressions �B5�–�B7�.

Considering the particular case of straight vortex lines
parallel to the plane �yz� and tilted at a certain angle � with
respect to the c direction we obtain the following expression
for the interaction energy of two vortices:

�int�R� =
�0

2

16�3�ab
� d2q cos�qR�S��q� , �38�

S��q� =
1

�abq2�D	 1 + k�
2

1 + p�
2 −

1

�q2 + �ab
−2��1 + p2�� +

2�1 − k2��k�1 − p2�sinh L + �k2 − p2��cosh L − cos�pL�� + 2kp sin�pL��
�q2 + �ab

−2�1 + p2�2�2k cosh L +��1 + k2�sinh L�� � ,

�39�

where

k� = q tan �/��2q2 + �ab
−2, p� = qy tan �/��2q2 + �ab

−2,

and the parameters L, k, and p are described by expression
�35�. In the limit of strong anisotropy ���1� the spectral
function S��q� �Eq. �39�� naturally coincides with the corre-
sponding expression �34� obtained for the layered system
without Josephson coupling.

Some typical plots of the interaction energy vs the inter-
vortex distance for tilted vortex lines calculated using Eqs.
�38� and �39� are shown in Figs. 5 and 6. Analyzing the
dependence �int�R� one can separate three contributions to
the energy of intervortex interaction: �i� a short-range repul-

sion �for R��ab
�1+tan2 �� which decays exponentially

with increasing intervortex distance R; �ii� an intervortex at-
traction which comes into play for the region �ab

�1+tan2 �
�R���ab and decays exponentially with the vortex-vortex
distance R for R���ab; and �iii� long-range �Pearl� repul-
sion which decays as R−1 at large distances and results from
the surface contribution to the energy. Taking the limit R
��ab

�1+tan2 � we get

�int/�0 �
D���2 + tan2 �

�
ln
Lc

R
� .

In the region �ab
�1+tan2 ��R���ab the short-range inter-

action term vanishes and the interaction energy vs R is given

FIG. 6. �Color online� Typical plots of the interaction energy per vortex �Eqs. �38� and �39�� vs the distance R between two tilted vortices
for an anisotropic film of the thickness D=10�ab. �a� Interaction energy for the anisotropy parameter �=9 and different tilting angles. The
numbers near the curves denote the values of tilting angle �. �b� Interaction energy for �=73° and different values of anisotropy parameter.
The numbers near the curves denote the values of �.
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by the sum �Eq. �36�� of attractive and Pearl’s contributions.
Similarly to the case of decoupled layers discussed above the
attractive term can result in the appearance of a minimum in
the dependence of the vortex-vortex interaction potential vs
R. The position of this minimum can be roughly estimated as
the boundary of the region of the short-range repulsion:
Rmin��ab

�1+tan2 �. Obviously, the minimum should disap-
pear provided Rmin���ab, i.e., when the region of the attrac-
tion between vortices vanishes. This condition gives us the
upper boundary on the tilting angle � restricting the interval
of the energy minimum existence,

tan2 � � �2 − 1.

The lower boundary of this angular interval can be found
comparing the attractive and repulsive terms in expression
�36� at the distance Rmin,

tan2 � �
2�ab

2

Def f
2 
1 +�1 +

Def f
2

�ab
2 � .

These analytical estimates of the angular interval are in a
rough qualitative agreement with the numerical calculations
�see Figs. 5 and 6� for two values of the film thickness D
=3�ab and 10�ab. Indeed, one can see that increasing the
tilting angle we first deepen the minimum in the interaction
potential and then make it more shallow. The figures confirm
the deepening of the minimum with the increase in the an-

isotropy parameter �. Our numerical calculations demon-
strate that for the film thickness D=3�ab �Fig. 5� the mini-
mum of the interaction energy of two straight tilted vortices
can appear only for ��14. Starting from ��27 the bound
vortex pair becomes energetically favorable. An increase in
the film thickness reduces the relative contribution of Pearl
repulsion to the energy of intervortex interaction �int. As a
result attraction of vortices takes place for smaller values of
the tilting angle � and anisotropy parameter �. Thus, in a
film with the thickness D=10�ab �Fig. 6� the minimum in the
�int�R� dependence appears for ��7, whereas creation of the
bound vortex pair becomes energetically favorable for �
�9.

As a next step, we check if the above results obtained for
straight tilted vortices remain valid for the curved vortex
lines. Our analysis of the effect of the vortex line curvature is
carried out for model vortex profiles found in Sec. II B. The
resulting typical dependencies of the intervortex interaction
potential vs R for different magnetic-field values and aniso-
tropy parameters are shown in Figs. 7 and 8. One can clearly
see that the minimum in the interaction potential vs R sur-
vives when we take account of the vortex line curvature.
Moreover the curving of the vortex line even deepens this
minimum as it is confirmed by the comparison of energies of
straight tilted and curved vortices presented in Fig. 8. For
such comparison we choose the straight vortex lines connect-
ing the ends of curved vortices. We find that for curved vor-

FIG. 7. �Color online� Typical plots of the interaction energy per vortex �Eq. �37�� vs the distance R between two curved vortices for an
anisotropic film of the thickness D=3�ab: �a� �=15 and �b� �=27. The numbers near the curves denote the values of the ratio Ha /Hab. The
shape of vortex lines is schematically shown in the insets.

FIG. 8. �Color online� Comparison of the vortex-vortex interaction potentials for curved �Eq. �37�� �solid lines� and straight tilted �Eqs.
�38� and �39�� �dashed lines� vortices for an anisotropic film of the thickness D=3�ab with different anisotropy parameters: �a� �=15, Ha

=0.91Hab ��=80.6°� and �b� �=27, Ha=0.6Hab ��=81.5°�. The shape of vortex lines is schematically shown in the insets.
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tices the energy minimum exists even for smaller anisotropy
parameters than for straight vortices �i.e., the threshold an-
isotropy value for D=3�ab becomes less than ��14�. Of
course, increasing the film thickness one can weaken the
restrictions on the existence of the minimum in the interac-
tion potential: e.g., for D=10�ab the minimum appears at
��9.

The above theoretical analysis demonstrates that vortex-
vortex attraction and the formation of chains are possible
only for the rather large tilting angles and at low vortex
concentrations, i.e., when the magnetic-field component Hz
perpendicular to the film plane is very weak. In fields Hz
slightly above Hc1 Abrikosov vortices will form chains due
to the long-range attractive interaction. Peculiarities of pen-
etration of such chains of tilted Abrikosov vortices into bulk
layered �anisotropic� superconductor are well known: in the
first approximation, the vortex period in chains does not de-
pend on applied magnetic field while the distance between
chains changes as 1 /Hz. The presence of vortex chains sig-
nificantly modifies the magnetization curves with respect to
analogous curves for isotropic superconductors.30 In the next
sections we discuss additional peculiarities of intervortex in-
teraction specific for thin-film samples of layered �aniso-
tropic� superconductors.

IV. VORTEX CLUSTERS

The unusual vortex-vortex interaction potential behavior
discussed in the previous section can result in unconven-
tional vortex structures. We start our analysis of energetically
favorable vortex structures from the problem of stability of a
vortex chain. The formation of infinite vortex chains is
known to be a signature of the intervortex attraction in bulk
anisotropic superconductors. The long-range repulsion of
vortices in thin films can destroy the infinite vortex chains.
Indeed, despite of the fact that two vortices attract each other
at a certain distance, further increase in the number of vorti-
ces arranged in a chain can be energetically unfavorable be-
cause of the slower decay of the repulsive force compared to
the attractive one. In this case, for rather thin samples, there
appears an intriguing possibility to observe vortex chains of
finite length, i.e., vortex molecules or clusters. In this section

we present the calculations of energies of such vortex clus-
ters.

As we have demonstrated above, the minimum in the in-
teraction potential exists for both the limits of strong and
moderate anisotropy. The vortex molecule cohesion energy is
given by the expression,

�int
�N� = �

i�j

�int�Rij� , �40�

where N is the number of vortices in the molecule and Rij are
the distances between ith and jth vortices in the chain mol-
ecule. Shown in Figs. 9 and 10 are typical plots of the inter-
action energy per vortex vs the intervortex distance R for
equidistant vortex chains with different N numbers calcu-
lated within the model of decoupled superconducting layers
and anisotropic London theory. The energetically favorable
number of vortices in a molecule grows as we increase the
film thickness and/or the tilting angle because of the increas-
ing attraction term in the pair potential �int. Shown in the
insets of Fig. 9 are schematic pictures of vortex matter con-
sisting of dimeric and trimeric molecules. Finally, for rather
thick samples with D��ab we get a standard infinite chain
structure typical for bulk systems. Note that the formation of
an infinite vortex chain may be considered in some sense as

FIG. 9. �Color online� Typical plots of the interaction energy per vortex �Eqs. �33�, �34�, and �40�� vs the intervortex distance R in an
equidistant chain of N vortices in a stack of decoupled superconducting layers �D=3�ab�: �a� �=78° and �b� �=80°. The numbers near the
curves denote the number N of vortices in molecule. Insets show schematic pictures of vortex matter consisting of �a� dimeric and �b�
trimeric molecules.

FIG. 10. �Color online� Typical plots of the interaction energy
per vortex vs the intervortex distance R in an equidistant chain of N
vortices for D=3�ab, �=27, Ha=0.513Hab ��=80°�. The numbers
near the curves denote the number N of vortices in a molecule. The
shape of vortex line and effective tilting angle � are schematically
shown in the inset.
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a polymerization of the vortex molecules. Certainly, the
crossover from the vortex molecule state to the infinite chain
structure is strongly influenced by the increase in the vortex
concentration governed by the component Bz of the external
magnetic field perpendicular to the film. Indeed, one can
expect such a crossover to occur when the mean intervortex
spacing approaches the molecule size. Thus, the vortex mol-
ecule state can appear only in a rather weak perpendicular
field when its observation can be complicated, of course, by
the pinning effects.

V. PHASE TRANSITIONS IN VORTEX LATTICES

Considering the effect of a finite magnetic field �i.e., a
finite concentration of vortex clusters� we restrict ourselves
by the simplest case of regular vortex arrays. For a regular
vortex array the formation of clusters corresponds to the
transition with a change in the number of vortices in the
elementary lattice cell. The mechanism underlying such tran-
sition is naturally connected with the appearance of the mini-
mum in the interaction potential for a vortex pair. In this
section we present our calculations of energy of vortex lat-
tices with different number of flux quanta per unit cell. The
possibility to get the energetically favorable states with a few
vortices per unit cell will be illustrated for a particular inter-
vortex interaction potential derived above for a model of
decoupled superconducting layers. The generalization of
such consideration for anisotropic London theory is straight-
forward. Note that the vortex-lattice structure for bulk aniso-
tropic superconductors in tilted field in the framework of
London approach has been calculated in Ref. 31.

Let’s consider a vortex lattice characterized by the trans-
lation vectors T= ia1+ ja2, where a1,2 are primitive vectors
of the lattice. The primitive cell occupies the area A0
= �a1
a2� ·z0 and is assumed to contain M vortices: BzA0
=M�0. Positions of vortices in a cell are determined by the
vectors rm �m=1,M� �see Fig. 11�. The interaction energy
per unit lattice cell can be expressed via the vortex-vortex
interaction potentials �Eqs. �33� and �34��,

�c�rmk,T� = �
m,k�m

M

�int�rmk� + �
T�0

�
m,k

M

�int�T + rmk� . �41�

The interaction energy �Eq. �41�� depends on both the rela-
tive positions rmk=rm−rk of vortices in the primitive cell and
the structure of the vortex lattice defined by the translation
vectors T. The first term in Eq. �41� describes the interaction
energy between vortices in the primitive cell �without the
lattice contribution�, whereas the second sum takes account
of the lattice effects. With the help of the Poisson formula,

one can rewrite the intervortex interaction energy �Eq. �41��
in terms of the Fourier components

�c =
�0

2

16�3�ab
	4�2

A0
�
Q

�
m,k

M

S�Q�cos�Qrmk� − M� d2qS�q�� ,

�42�

where the function S�q� is determined by Eq. �34� and Q are
the reciprocal-lattice vectors. The sum and the integral in Eq.
�42� diverge both at Q=0 and at large Q values. The small Q
divergence corresponds to the linear �in the system size� in-
crease in the vortex energy because of the slow 1 /R decay of
the vortex-vortex interaction potential. The large Q diver-
gence is logarithmic and is associated with the vortex self-
energy.

For simplicity, we restrict ourselves to the case of an in-
stability with respect to the unit-cell doubling and tripling,
i.e., formation of the vortex lattices with two and three flux
quanta per unit cell �M =2 and M =3�. Hereafter we consider
only the shifts of vortex sublattices along the y direction and
choose the appropriate reciprocal-lattice vectors

Qij =
2�

b
�i − j/4�x0 +

�

a
jy0, i, j = 0, � 1, � 2, . . . ,

Qij =
2�

b
�i − j/6�x0 +

2�

3a
jy0, i, j = 0, � 1, � 2, . . .

for M =2 and M =3, respectively. Here we consider only
equidistant vortex chains within the primitive cells. Fixing
the value of the field Bz we fix the unit-cell area A0=2ab for
M =2 and A0=3ab for M =3. Thus, the interaction energy
�Eq. �42�� depends only on two parameters: �i�  =b /a ratio
characterizing the lattice deformation and �ii� relative dis-
placement !a of vortex sublattices along the y axis �see Fig.
11�. To exclude the divergence at Q=0 it is convenient to
deal with the energy difference,

!�c = min
 

��c� ,!a�� − min
 

��c� ,0�� . �43�

The results of our numerical calculations of this energy dif-
ference are shown in Fig. 12�a�. One can clearly observe that
changing the vortex tilting angle we obtain the minimum in
the function !�c�!a� which gives us the evidence for the
phase transition in the lattice structure with the unit-cell dou-
bling or tripling depending on the vortex tilting angle. The
multiplication of the unit cell is accompanied by the strong
change in the lattice deformation ratio  �see Fig. 12�b��.

VI. CONCLUSIONS

To sum up, we suggest a scenario of the phase transitions
between the flux structures with different number of vortices
per unit cell which can be realized in thin films of anisotropic
superconductors placed in tilted magnetic fields. We demon-
strate that the vortex interaction in the films of anisotropic
superconductors placed in tilted magnetic fields is very spe-
cial. The underlying physics arises from the interplay be-
tween the long-range attraction and repulsion between tilted

2a

b
a

a1

2

y

x

�a

(a)
3a

b
a2

y

xa1

�a

(b)

��a

FIG. 11. �Color online� Vortex lattice with two �a� M =2 and �b�
three M =3 vortices per a primitive cell.
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vortex lines. In consequence, new and very reach types of
vortex structures may appear. They are formed from the vor-
tex dimers, trimers, etc., and the transition between different
types of vortex structures may be controlled by tilting of
external magnetic field and/or by varying of the temperature.
Our theoretical findings are based on two theoretical ap-
proaches: anisotropic London model and the London-type
model of decoupled superconducting layers. Taking account
of the vortex tilt and bending we analyzed the distinctive
features of the vortex-vortex interaction potential in a wide
range of parameters and fields and demonstrated the possi-
bility to obtain a minimum in the vortex interaction potential
vs the intervortex distance. Further analysis in the paper in-
cluded the calculations of energy of finite-size vortex clusters
as well as the energy of regular vortex arrays with different
number of vortices per unit cell. The phase transitions ac-
companied by the multiplication of the primitive lattice cell
appear to be possible for dilute vortex arrays, i.e., for rather
small magnetic-field component Bz. We believe that our the-
oretical predictions concerning the unusual vortex configura-
tions are experimentally observable using the modern vortex
imaging methods such as Lorentz microscopy, scanning tun-
neling microscopy, scanning Hall probe, or decoration tech-
nique.
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APPENDIX A: INTERACTION ENERGY OF TILTED
VORTICES: CONTINUOUS LIMIT

Let us evaluate the interaction energy �Eq. �32�� of two
tilted parallel vortex lines taking

rn
�1� = ns tan �y0, rn

�2� = rn
�1� + R

and assuming qs�1 and qys tan ��1. We introduce a con-
tinuous coordinate t=ns and continuous function fq�t�. Thus,
the linear system of Eq. �28� reduces to the following inte-
gral equation:

fq�t� +
1

2q�ab
2 �

−D/2

D/2

dt�e−q�t−t��fq�t�� = eiqyt tan �. �A1�

Equation �A1� can be rewritten as a differential one

d2fq

dt2 − ��ab
−2 + q2�fq�t� = − �qy

2 tan2 � + q2�eiqyt tan �

�A2�

at the interval −D /2� t�D /2 with the boundary conditions

�
dfq

dt
� qfq��

�D/2
= �iqy tan � � q�e�iqyD tan �/2. �A3�

Introducing the notations

" = t�q2 + �ab
−2, L = D�q2 + �ab

−2, k = q/�q2 + �ab
−2,

p = qy tan �/�q2 + �ab
−2,

one can rewrite Eq. �A2� and boundary conditions �Eq. �A3��
in dimensionless form

d2fq

d"2 − fq = − �p2 + k2�eip", �A4�

�
dfq

d"
� kfq��

�L/2
= �ip � k�eipL/2. �A5�

The solution of Eq. �A4� has the form

fq�"� =
p2 + k2

1 + p2 eip" + 
1 −
p2 + k2

1 + p2 ��ae" + be−"� , �A6�

where the constants a and b are defined by the boundary
conditions �Eq. �A5��,

FIG. 12. �Color online� �a� The energy difference !�c vs the relative displacement !a of vortex sublattices for different tilting angles
�=78° �solid line� and �=80° �dashed line� and different number of flux quanta per unit cell M =2,3. �b� Lattice deformation ratio  
=b /a vs the relative displacement !a of vortex sublattices for different tilting angles �=78° �solid line� and �=80° �dashed line� and
different number of flux quanta per unit cell M =2,3. Here we put D=3�ab , a0=60�ab. The numbers near the curves denote the number M
of vortices per unit cell.
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a =
e�ip+1�L/2�k + ip��1 + k� + e−�ip+1�L/2�k − ip��1 − k�

2�2k cosh L + �1 + k2�sinh L�

b =
e�ip−1�L/2�k + ip��1 − k� + e�−ip+1�L/2�k − ip��1 + k�

2�2k cosh L + �1 + k2�sinh L�
.

In the continuous limit the expression for the interaction en-
ergy �Eq. �32�� takes the form

�int =
�0

2

16�3�ab
2 � d2q

q2 cos�qR�S�q� . �A7�

Here the function

S�q� = �
−D/2

D/2

dtfq�t�e−iqyt tan �

can be calculated analytically

S�q� = D
p2 + k2

1 + p2 +
2�1 − k2��k�1 − p2�sinh L + �k2 − p2��cosh L − cos�pL�� + 2kp sin�pL��

�q2 + �ab
−2�1 + p2�2�2k cosh L + �1 + k2�sinh L�

. �A8�

APPENDIX B: INTERACTION ENERGY OF CURVED
VORTICES: ANISOTROPIC LONDON MODEL

To calculate the vortex-vortex interaction within aniso-
tropic London model we use general expressions derived in
Ref. 29 for the total energy E of an arbitrary arrangement of
curved vortices in a superconducting film of thickness D
with the c axis perpendicular to the film plane,

E = Evi + Estray + Evac, �B1�

where

Evi =
�0

2

16�
� d2k�

4�2

1

2D
�
m

�
�

G��k�,km��#�
vi�k�,km��2,

Estray =
1

8�
� d2k�

4�2

k�
2

$
��1 − e−2$D���+�2 +��e2$D − 1���−�2� ,

Evac =
1

8�
� d2k�

4�2 k��e−2k�D��−�2 + ��+�2� .

Here �=x ,y ,z and

Gx�k� = Gy�k� =
1

1 + k�
2 �c

2 + kz
2�ab

2 ,

Gz�k� =
1 + k2�c

2

�1 + k2�ab
2 ��1 + k�

2 �c
2 + kz

2�ab
2 �

,

�−�k�� =
$�A�k� − $�e−$D − B�k� + $��

k�C
,

�+�k�� =
$�A�k� + $�e$D − B�k� − $��

k�C
,

�−�k�� = �$/k�C�


 �− 2k�B + ��k� + $�e$D + �k� − $�e−$D�A� ,

�+�k�� = �− $/k�C�


�− 2k�A + ��k� + $�e$D + �k� − $�e−$D�B� ,

C�k�� = e−$D�k� − $�2 − e$D�k� + $�2, $ = �k�
2 + �ab

−2,

A�k�� =
1

2D
�
m

gl�k�,km�#z
vi�k�,km�, B�k��

=
1

2D
�
m

e−ikmdgl�k�,km�#z
vi�k�,km� ,

gl�k� =
�0

1 + k2�ab
2 .

The summation in the above expressions is carried out over
kz=km�m� /D , m=0,�1,�2, . . . and � stands for the
vector component parallel to the xy plane. Following Ref. 29
we introduce here the Fourier transform #vi�k� ,km� of the
vorticity distribution #vi�r�:

#�
vi�k�,km� = − 2i� d2r�e−ik�r��

−D

0

dz sin�kmz�#�
vi�r�,z� ,

�B2�

#z
vi�k�,km� = 2� d2r�e−ik�r��

−D

0

dz cos�kmz�#z
vi�r�,z� . �B3�

For a pair of curved vortices shifted in the y direction at a
certain distance R expressions �B2� and �B3� take the form

#x
vi�k�,km� = 0,

#y
vi�k�,km� = − 2i�1 + e−ikyR��

−D

0

y��z�e−ikyy�z� sin�kmz�dz ,

#z
vi�k�,km� = 2�1 + e−ikyR��

−D

0

e−ikyy�z� cos�kmz�dz .

To find the vortex-vortex interaction energy we should take
the terms in Eq. �B1� which depend on mutual vortex ar-
rangement,
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�int = �0��int
vi + �int

stray + �int
vac� , �B4�

where �0=�0
2 /16�3�ab and

�int
vi = ��

0



#d#�
−D̃

0

d�1�
−D̃

0

d�2�J0�#����2� − ���1� + R̃�� + J0�#����2� − ���1� − R̃��� 
 �%1�#,�1,�2� + %2�#,�1,�2�� , �B5�

�int
stray = 4��

0



#d#�
−D̃

0

d�1�
−D̃

0

d�2�J0�#����2� − ���1� + R̃�� + J0�#����2� − ���1� − R̃���



%3�#,�1,�2�

"�#�sinh�"�#�D̃��e−"�#�D̃�# − "�#��2 − e"�#�D̃�# + "�#��2�2
, �B6�

�int
vac = 4��

0



#d#�
−D̃

0

d�1�
−D̃

0

d�2�J0�#����2� − ���1� + R̃�� + J0�#����2� − ���1� − R̃���



%4�#,�1,�2�

# sinh2�"�#�D̃��e−"�#�D̃�# − "�#��2 − e"�#�D̃�# + "�#��2�2
,

"�#� = �1 + �2#2, u�#� = �1 + #2. �B7�

Here we have introduced dimensionless coordinates �=y /�ab, �=z /�ab, dimensionless wave number #=q�ab, and use the
notations

%1�#,�1,�2� = ����1�����2�
sinh�"�#��D̃ + ��1 + �2 − ��1 − �2��/2��sinh�"�#���− �1 − �2 − ��1 − �2��/2��

"�#�sinh�D̃"�#��
,

%2�#,�1,�2� =
"�#�cosh�"�#��D̃ + ��1 + �2 − ��1 − �2��/2��cosh�"�#���− �1 − �2 − ��1 − �2��/2��

#2 sinh�D̃"�#��

−
cosh�u�#��D̃ + ��1 + �2 − ��1 − �2��/2��cosh�u�#���− �1 − �2 − ��1 − �2��/2��

#2u�#�sinh�D̃u�#��
,

%3�#,�1,�2� = �#2 cosh�"�#�D̃� + "�#�2cosh�"�#�D̃� + 2#"�#�sinh�"�#�D̃�� 
 �cosh�"�#��D̃ + �1��cosh�"�D̃ + �2��

+ cosh�"�#��1�cosh�"�#��1�� +�cosh�"�#��D̃ + �1���cosh�"�#��2� + cosh�"�#�z1�cosh�"�#���2 + D̃�� ,

%4�#,�1,�2� = �2#2 cosh2�"�#�D̃� + sinh2�"�#�D̃� + 2#"�#�sinh�"�#�D̃�cosh�"�#�D̃�� 
 �cosh�"�#��D̃ + �1��cosh�"�#��D̃ + �2��

+ cosh�"�#��1�cosh�"�#��1�� − 2�#2 cosh�"�#�D̃� + #" sinh�"�#�D̃�� 
 �cosh�"�#��D̃ + �1��cosh�"�#��2�

+ cosh�"�#��1�cosh�"�#���2 + D̃��� .

The dimensionless thickness of the film D̃ and dimensionless intervortex distance R̃ are measured in the units of �ab.
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